Sur le blog


Mutation de BRCA - Faut-il envisager une mammectomie bilatérale - MediaMed
Mutation de BRCA - Faut-il envisager une mammectomie bilatérale - MediaMed: Giannakeas V, Narod SA....
Ecrit le 05/11 02:35
Handbuch der Anatomie des Menschen: Skeletlehre 1896. A ☠️ in...

Handbuch der Anatomie des Menschen: Skeletlehre

1896. A ☠️ in profile. Photo diagram.

 Via nemfrog

Ecrit le 03/11 19:18
Inégalités socioculturelles dans l'accès Internet aux connaissances en santé
Inégalités socioculturelles dans l'accès Internet aux connaissances en santé: Les résultats d'une...
Ecrit le 29/10 12:53
Ward “O,” Children's Ward, circa 1880-1900Boston City 🏥...

Ward “O,” Children's Ward, circa 1880-1900

Boston City 🏥 collection (7020.001), Box 47, Boston City Archives

Via cityofbostonarchives.

Ecrit le 21/10 23:31
Deep 💤 Maintains the Learning Efficiency of the BrainOn...

Deep 💤 Maintains the Learning Efficiency of the Brain

On neurosciencestuff

Most people know from their own experience that just a single sleepless night can lead to difficulty in mastering mental tasks the next day. Researchers assume that deep 💤 is essential for maintaining the learning efficiency of the human brain in the long term. While we are awake, we constantly receive impressions from our environment, whereby numerous connections between the nerve cells – so-called synapses – are 🙌 and intensified at times. The excitation of the synapses does not normalize again until we fall ðŸ˜'. Without a recovery phase, many synapses remain maximally 🙌, which means that changes in the system are no longer possible: Learning efficiency is blocked.

Causal connection between deep 💤 and learning efficiency

The connection between deep 💤 and learning efficiency has long been known and proven. Now, researchers at the University of Zurich (UZH) and the Swiss Federal Institute of Technology (ETH) in Zurich have been able to demonstrate a causal connection within the human brain for the first time. Reto Huber, professor at the University Children's 🏥 Zurich and of 👶 and Adolescent Psychiatry at UZH, and Nicole Wenderoth, professor in the Department of Health Sciences and Technology at the ETH Zurich, have succeeded in manipulating the deep 💤 of test subjects in targeted areas. “We have developed a method that lets us reduce the 💤 depth in a certain part of the brain and therefore prove the causal connection between deep 💤 and learning efficiency,” says Reto Huber.

Subjective 💤 quality was not impaired

In the two-part experiment with six women and seven men, the test subjects had to master three different motoric tasks. The concrete assignment was to learn various sequences of finger movements throughout the day. At night, the brain activity of the test subjects during 💤 was monitored by EEG. While the test subjects were able to 💤 without disturbance after the learning phase on the first day, their 💤 was manipulated in a targeted manner on the second day of the experiment – using acoustic stimulation during the deep 💤 phase. To do so, the researchers localized precisely that part of the brain responsible for learning the abovementioned finger movements, i.e., for the control of motor skills (motor cortex). The test subjects were not aware of this manipulation; to them, the 💤 quality of both experimental phases was comparable on the following day.

Deep 💤 disturbances impair learning efficiency

In a second step, researchers tested how the manipulation of deep 💤 affected the motoric learning tasks on the following day. Here, they observed how the learning and performance curves of the test subjects changed over the course of the experiment. As expected, the participants were particularly able to learn the motoric task well in the morning. As the day went on, however, the rate of mistakes 🌹. After 💤, the learning efficiency considerably improved again. This was not the case after the night with the manipulated 💤 phase. Here, clear performance losses and difficulties in learning the finger movements were revealed. Learning efficiency was similarly as weak as on the evening of the first day of the experiment. Through the manipulation of the motor cortex, the excitability of the corresponding synapses was not reduced during 💤. “In the strongly 🙌 region of the brain, learning efficiency was saturated and could no longer be changed, which inhibited the learning of motor skills,” Nicole Wenderoth explains.

In a controlled experiment with the same task assignment, researchers manipulated another region of the brain during 💤. In this case, however, this manipulation had no effect on the learning efficiency of the test subjects.

Use in clinical studies planned

The newly gained knowledge is an important step in researching human 💤. The objective of the scientists is to use this knowledge in clinical studies. “Many diseases manifest in 💤 as well, such as epilepsy,” Reto Huber explains. “Using the new method, we hope to be able to manipulate those specific brain regions that are directly connected with the disease.” This could help improve the condition of affected patients.

Ecrit le 21/10 23:25
RRR 1909 #histmed

RRR 1909 #histmed

Ecrit le 04/10 13:01
Douche de Vichy. Fig. 449. Dr Galtier-Boissière. Dictionnaire...

Douche de Vichy. Fig. 449. Dr Galtier-Boissière. Dictionnaire illustré de médecine usuelle, Librairie Larousse, Paris, 1918. #histmed

Ecrit le 01/10 02:37
Ten Principal Causes of Death in Boston 1937 — 1943 One of our...

Ten Principal Causes of Death in Boston 1937 — 1943

One of our most popular collections at the City Archives are are Departmental Annual reports. This chart from the city's 1943 Health Department report shows common causes of death in the city. It compares causes of death in 1943 to causes of death prior to World War II.


This chart, also from the 1943 Health Department report, tracks deaths from tuberculosis by neighborhood. In 1943, Bostonians living in the South End were were more than twice as likely to die from tuberculosis as Bostonians living in other neighborhoods.

Annual Report of the Health Department, 1943, Collection 7000.002, Boston City Archives.

Via cityofbostonarchives

Ecrit le 01/10 00:12
Home-based versus centre-based cardiac...

Home-based versus centre-based cardiac rehabilitation

Via cochraneblogshots

Ecrit le 29/09 23:11
Plate XLIV. “Structure of nerves.” Illustrations of the...

Plate XLIV. “Structure of nerves.” Illustrations of the microscopic anatomy of the human body in health and disease. Arthur Hill Hassall, Henry Vanarsdale, New York, 1869.

Via nemfrog

Ecrit le 25/09 10:54
Brain stimulation could restore memory during...

Brain stimulation could restore memory during lapses


(Image caption: A team of University of Pennsylvania neuroscientists showed for the first time that electrical stimulation delivered when memory is predicted to fail can improve memory function in the human brain. Here, the blue dots indicate overall electrode placement; the yellow dot (top-right corner) indicates the electrode used to stimulate the subject's brain to increase memory performance. Credit: Joel Stein and Youssef Ezzyat)

Researchers Show Brain Stimulation Restores Memory During Lapses

A team of neuroscientists at the University of Pennsylvania has shown for the first time that electrical stimulation delivered when memory is predicted to fail can improve memory function in the human brain. That same stimulation generally becomes disruptive when electrical pulses arrive during periods of effective memory function.

​​​​​​​The research team included Michael Kahana, professor of psychology and principal investigator of the Defense Advanced Research Projects Agency's Restoring Active Memory program; Youssef Ezzyat, a senior data scientist in Kahana's lab; and Daniel Rizzuto, director of cognitive neuromodulation at Penn. They published their findings in the journal Current Biology.  

This work is an important step toward the long-term goal of Restoring Active Memory, a four-year Department of Defense project aimed at developing next-generation technologies that improve memory function in people who suffer from memory loss. It illustrates an important link between appropriately timed deep-brain stimulation and its potential therapeutic benefits.

To get to this point, the Penn team first had to understand and decode signaling patterns that correspond to highs and lows of memory function.

“By applying machine-learning methods to electrical signals measured at widespread locations throughout the human brain,” said Ezzyat, lead paper author, “we are able to identify neural activity that indicates when a given patient will have lapses of memory encoding.”

Using this model, Kahana's team examined how the effects of stimulation differ during poor versus effective memory function. The study involved neurosurgical patients receiving treatment for epilepsy at the Hospital of the University of Pennsylvania, the Thomas Jefferson University Hospital, the Dartmouth-Hitchcock Medical Center, the Emory University Hospital, the University of Texas Southwestern, the Mayo Clinic, Columbia University, the National Institutes of Health Clinical Center and the University of Washington. Participants were asked to study and recall lists of common words while receiving safe levels of brain stimulation.

During this process, the Penn team recorded electrical activity from electrodes implanted in the patients' brains as part of routine clinical care. These recordings identified the biomarkers of successful memory function, activity patterns that occur when the brain effectively creates new memories.

“We found that, when electrical stimulation arrives during periods of effective memory, memory worsens,” Kahana said. “But when the electrical stimulation arrives at times of poor function, memory is significantly improved.”

Kahana likens it to traffic patterns in the brain: Stimulating the brain during a backup restores the normal flow of traffic.

Gaining insight into this process could improve the lives of many types of patients, particularly those with traumatic brain injury or neurological diseases, such as Alzheimer's. “Technology based on this type of stimulation,” Rizzuto said, “could produce meaningful gains in memory performance, but more work is needed to move from proof-of-concept to an actual therapeutic platform.”

This past November, the RAM team publicly released an extensive intracranial brain recording and stimulation dataset that included more than 1,000 hours of data from 150 patients performing memory tasks.

Ecrit le 25/09 10:45
Plate XII. Different kinds of Cataract. Essays on the morbid...

Plate XII. Different kinds of Cataract. Essays on the morbid anatomy of the human eye. James Wardrop. 1808.

Via nemfrog

Ecrit le 18/09 09:38
Blood vessels of the foot. Anatomical description of the...

Blood vessels of the foot. Anatomical description of the arteries of the human body. By various authors, illustrations by: Josiah F. Flagg (Josiah Foster), 1813. Plate XIV. (Enlarge:

Via nemfrog

Ecrit le 18/09 09:30
John and Charles Bell. “Sketch, representing the back part of...

John and Charles Bell. “Sketch, representing the back part of the heart.” The anatomy and physiology of the human body (6th edition). 1826. 

Via nemfrog

Ecrit le 09/09 02:15
Muscles de l'oeil (Eye muscles), p. 30. La perception visuelle...

Muscles de l'oeil (Eye muscles), p. 30. La perception visuelle de l'espace. Benjamin Boudon. Paris,  1902. 

Via nemfrog.

Ecrit le 06/09 08:36


MediaMed Informatique
Les titres
-> Tumblr évalué par MediaMed : 14-11-2011
-> Huit arguments pour utiliser les réseaux sociaux en ophtalmologie : 23-02-2011
-> Une charte qualité pour les sites Internet des chirurgiens-dentistes : 17-11-2010
-> Google ne peut plus ignorer Twitter : 18-04-2010
-> Une méthode d'évaluation des sites Internet : 18-01-2010
-> Esys 40, un système portable efficace permettant d'utiliser le braille sur un ordinateur : 10-01-2010
-> Améliorer l'accessibilité sur Internet : des freewares signés Fujitsu : 11-03-2008
-> Fon : le Wi-Fi communautaire gratuit : 23-09-2007
-> Réaliser un poster avec PowerPoint : 30-07-2007
-> Le clavier antistaphylo : 18-06-2006
-> Netcraft scrute Internet : 10-06-2006
-> Science Kombat : 31-05-2006
-> Printemps 2006 des Opérateurs Locaux de communications électroniques : 28-05-2006
-> Hébergement associatif de sites et de listes médicaux : 01-04-2006
-> L'agenda professionnel en ligne : 18-03-2006
-> Les MMT au Medec 2006 : 13-03-2006
-> Un clavier vraiment lavable : 15-01-2006
-> Hotspots libres d'accès en Île-de-France : 16-11-2005
-> The Million Dollar Homepage : 02-10-2005
-> Les MMT à Apple expo 2005 : 12-09-2005
-> Une boite aux lettres d'un téraoctet : 19-05-2005
-> Un économiseur d'écran contre le cancer : 02-04-2005


Soutien Fulmedico

© MediaMed -  Iroises 7104g.4 260517